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'The general properties are investigated of equations utilized in the 
work [l] for describing the rotation of the orbital plane. Analogy is es- 
tablished between the equation describing the variation of the lateral angu- 
lar 
quasi inear oscillations of the mechanical system with one degree of freedom. 

deflection of the satellite from the fixed plane, and the equation for 

Certain characteristic peculiarities of spatial motion in the central 
field are illustrated on examples of isolated solutions. 

* 
* * 

1. In the work [l] we find the equations describing the rotation of 
satellite orbit plane: 

Y2, 
4 J i  - -- 
tlu 

the 
tor 
of 

Ilere j ,  is the vector component of the perturbing acceleration,normal to 

' of the satellite, 2 is the focal parmet& of the orbit, 11 is the product 
the gravitational constant by the mass of the Earth. 

osculathg plane of the orbit, y = l/r, r is the geocentrical radius- vec- 

The variable - v is de- 
termincd by the equation 

do - 
tll (1.2) 
- _  - YIV v2, 



2 .  

( 1 . 3 )  yr = sin i cos u, 

13 = co5 i. 

As follows from Fig.1, variable vi Jcter- 
mines the value of the sine of satellite's 
deflection angle from the fundamental coordi- 
nate plane  511 

11.4) yi = sinrp. 

Fig. 1 

the satellite. 

Let us assume the terrestrial equatorial 
plane being the coordinate plane ET-,. Then CF 
will represent the gzograpliical latitude of 

Let us ascertain the geographical signific,ance of variable y2. From the 
spherical triangle in Fig.1 follows the dependence 

where 6 is t h e  angle between tile orbit and the incridional p l m e s .  
into account (1 .3) ,  formula (1.5) may hc rewritten in the form 

Taking 

For the angle A ,  constituted by the meridional p l a n e  and the plane 
(Fig.1) , we may obtain the following ecpation: 

Let R be the angular velocity of Earth's rotation; then, equation 

r '  will determine the variation of satellite's geographical longitude A 

For the sake of illustration we shall consider two examples. 

1) Assume that the orbit plane is riot perturbed. 

Postulating j = 0, we slirill ohtain f-rorn E q s .  (1) 
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According t o  (1.6), ( 1 . 8 j ,  the var ia t ion  of' the  angle 6 will be de ter -  
mined by the formula 

k = nlTLg [cos io rg ( u  + U") J -t c. (1.10) 

2)  Let us  consider thc motion of  the s a t e l l i t e  i n  the  assumption t h a t  
k = j ,  /upy3 maintains :I constant value. 
vector  descr ibes  i n  the i n e r t i a l  space a cone with an aperturc  angle equal t o  
TI - Z a r c t g k  (see [l]). 
shape i n  i t s  iristantaneous plane,  the pro jec t ion  of s a t e l l i t e ' s  t r a j ec to ry  
on the  Ear th ' s  surface i d i l l  have the shape of a small circle (without taking 
in to  account the  Ea r th ' s  r o t a t i o n ) .  
ing t o  the i n i t i a l  conditions y,(O) = ~ ~ ( 0 )  = O , v , ( O )  = 1 

In t h i s  case the s a t e l l i t e ' s  radius-  

l he rc fo re ,  indcpendently from the  va r i a t ion  of  o r b i t  

Let us consider t h c  so lu t ion  correspond- 
( i ( 0 )  = 0), 

(1.11) - y3 = - 1 (1 + I C 2 C O S ~ I +  k 2 U ) .  

1 + IC2 

Ilence we f ind  the expressions fo r  the  angles 4 ,  A ,  6 ( see  (1.4), (1.6), 
(1.7) a t  the addi t iona l  condition x(0 j  = 0 ) .  

(1.12) 1 ( 1 - ( ' ( I <  1 1 1- / I ?  /.) 1 
I '  

-_ 
'I --- ~ l l ~ t ' ~ l l l  

(1.13) 

(1.14) 

I~i~rniu1as (l.lZ), (1.13) general ize  the  r e s u l t s  obtaincd in the work 121 
fo r  tlic case of  c i r c u l a r  o r b i t .  

121s. (1) admit the f i r s t  in tegra l  
. 1 

a i d  of  
equat 

' 7  
\'- * 1) 

\diich thc  system of liqs. (1 j ma!' be rcduccd t o  ;I s i n g l e  d i f -  
on of scconcl ordcr  



wherc U(v) = j ,  /ppy3. 

I : q .  ( 2 . 2 )  corresponds t o  the case y3 > 0 (0 ,< i < YO")  ; f o r  ~ 3 <  0 
( Y O "  s i < 180") the square root  i n  the  right-hand p a r t  must be taken with 
the s ign  minus. 

According t o  the  so lu t ion  found fo r  y l ( v ) ,  the  angles i and are de te r -  - 
mined by the  formulas 

Eq .  ( 2 . 2 )  may be considered a s  the cquation of o s c i l l a t i o n s  of a cer- 
t a i n  mechanical system o f  u n i t  mass w i t h  na tura l  frequency w = 1, being under 
the  ac t ion  of  an externa l  nonlinear per turba t ion .  

The analogy given i s  qu i t e  remarkable. Hence it  follows t h a t  the solu-  
t i o n  of E q ,  ( 2 . 2 )  will ha\-e proper t ies  inherent  t o  the so-ca l led  quas i l inear  
o s c i l l a t i n g  systems. A t  the  same time tfLz -1Fpearance of  such e f f e c t s  as 
various- types o f  resonance o s c i l l a t i o n s ,  per iodica l  o r  near ly  
o s c i l l a t i o n s ,  au toosc i l l n t ions ,  is  poss ib le  [3, 41. 

per iodica l  

Let us consider as an example the problem of r o t a t i o n  of s a t e l l i t e ' s  
e l l i p t i c a l  o r b i t  plane with the  help of t ime-constant i n  magnitude small 
per turbing acce lera t ion  j normal t o  the osculat ing o r b i t a l  plane. In  t h i s  
case the  variable coe f f i c f&t  U(v) i n  the right-hand p a r t  of E q , ( 2 . 2 )  has 
the Eorm 

xherc j z, p ,  p ,  e ,  v n  a r e  constants  [ l ] .  
per turb ing  force coincides  with system's ( 2 . 2 )  na tura l  frequency, it i s  
obvious t h a t  a resonance case takes place.  
l u t i o n  corresponding t o  zero i n i t i a l  contfi t ion.; 

Inasmuch as the  frequency of the 

Indeed, let us consider the  so- 

i .  e .  , the  i n i t i a l  o r h i t  plane coincides \cith the plane Srl) .  This so lu t ion  
should be represented i n  the Iirst approsimntion i n  the form IS] 

y 1  = A s i n  (v + R ) ,  ( 2 . 4 )  

where 



i 
r 
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' l 'lwrc[~orv, typical  mani f'cstaf ion of' rcson;ince takes placc: t h c  small 
pc! r t~ i rh ing  force Icacls to  ;I s igniPicant  va r i a t ion  (from 0 t o  1) of coordina- 
t c ' s  y ,  o s c i l l a t i o n  amplitude. 

influence of  the considered perturbing acce lera t ion  leads t o  monotonic r o t a -  
t i o n  o i  the o r b i t a l  plane around t h e  l i n e  of  apsides ,  remaining €ixed i n  the  
i n e r t i a l  space. 

'I'he physical s ign i r icancc  of the so lu t ion  ( 2 . 4 )  cons i s t s  i n  t h a t  the  

The analogy of Eqs. (1.1) with the  equation o i  forced o s c i l l a t i o n s  of the 
quas i l i nea r  mechanical system allows us t o  apply the  methods of the  theory 
of  nonliriear o s c i l l a t i o n s  when inves t iga t ing  the prob1ems l inked with o r b i t  
plane r o t a t i o n  [3,  41. 

3 .  The case  presented i n  sec t ion  2 shows t h a t  t he  o s c i l l a t i n g  charac te r  
of q u a n t i t y y l  o r  angle 6 v a r i a t i o n  during the  action of a small per turbing 
€orce is  maintained over a long time i n t e r v a l  even i n  the  resonance case 

0 = arc s i n  [A  s i n  (v + B)]. 

I t  i s  c l e a r ,  a p r i o r i ,  t h a t  i n  order  t o  ob ta in ,  €or example, t he  mono- - is necessary t o  ass ign in  the right-hand p a r t  of ton ic  dependence 
E q .  ( 2 . 2 1  ;i funct ion j J v )  , e i t h e r  great i n  magnitude o r  rap id ly  r i s i n g .  
a q u a l i t a t i v e  v a r i a t i b n  i n  the  charac te r  of dependence 
requi re  s ign i  Cicmt e q m x l i t u r e s  of c h a r a c t e r i s t i c  ve loc i ty  

Such 
(v) w i l l  obviously 

Let us consider t he  case when the dependence 0 ( v )  has the form 

where a and 0 are constants  ( I a 1 < 1) . 
According t o  (3.1),  we s h a l l  have 

.Is may l x  secn from (1 .6 ) .  at  an assigned law of l a t i t u d e  -I @ m r i a t i o n  
the  a is le  6 inaintairis the constant  value ctg 6 = a / vl - a 2 ,  i .  e .  , the 
p ro jec t ion  of s a t e l l i t e ' s  o r b i t  on the ground sur face  has the  form of 
droiiw ( F i g . 2 ) .  
peiidcnce 

loxo- 
The constant  ~1 is linked w i t h  the angle 6 by the  sintple de- 

a = cos 6 ( 3 . 3 )  
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. .  

1 + sin (uv.+ cpo) 

1 - sin (av + cpo) 
h = -ttg61n 

2 (3.4) 

It is evident that the preassignment of either the dependence (3.1) or 

Indeed from Eq.  ( 2 . 2 )  we obtain outright 

(3.2) leads t o  the inverse problem of the determination of the law of compo- 
nent j, variation of the perturbing acceleration (or, to be more precise, 
of the quantity j Jupy3). 

Therefore, in the case considered the component j ,  must increase bound- 
lessly over the interval v -- vo = (  IT/^ - @ o ) / a  , corresponding to the 
attainment of latitude's maximum value 4 = n / 2 .  

Note that the orbit may, in general 
case, change arbitrarily its shape under 
the influence of the comp nent of the per- 
turbing acceleration acting in the oscu- 
lating plane of the orbit, whereupon the 
quantities p and ywill be certain functions 
of the variable v. In the simplest case, 
when the orbit mzintains in its instanta- 
neous plane a circular form, we shall have 
p = const.; y = const. 
formula (3.5) will determine the law of 
lateral overload variation jz/go (go = 
= u/p2 being the gravitation acceleration 
at circular orbit height). 

At the same time 

Fig. 2 Shown in Fig.3 are the dependences of 
the wantity 
of satellite revolution T = v / 2i-r being 

plotted in abscissa), correspondin? to various values of the angle 6. The 
initial value of the latitude 

was taken equal to zero 
(!or @ o  > O  the origin of the 
coordinates shifts along the 
sbsissaaxis by the quantity 

j ,  / !qy3 on time (the number 

@0/2.rr  cos6 ) .  

It is obvious that with 
the help of Eq.  ( 2 . 2 )  we may 
analogously find the law of 
variation of the component 
j ,  of the perturbing acce- Fig. 3 
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leration and in the general case, when the projecti.on of the satellite tra- 
jectory +(v) is preassigned in an arbitrary form. 

Manuscript received 
on 25 February 1966 
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